\qquad Exam Seat No: \qquad C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Digital Electronics and Digital Instruments

Subject Code : 2TE04DEI1
Semester : 4

Date : 05/05/2018

Branch: Diploma (Electrical)

Time : 10:30 To 01:30 Marks : 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) $\mathrm{A}+\mathrm{A}=$ \qquad

1. 0
2. 1
3. A
4. A^{2}
b) If $\mathrm{A}=01001, \mathrm{~A}^{\prime}{ }^{\prime}=$
5. 10111
6. 01001
7. 11011
8. 10110
c) How many Inputs does full adder has?
9. 1
10. 2
11. 3
12. 4
d) The number of digits in Octadecimal system are:-
13. 10
14. 15
15. 16
16. 8
e) Full form of POS is:-
17. Some of Parts
18. Sum of Product
19. Some of Product
20. Sum of power
f) Which Gate works as Universal Gate?
21. EX-OR
22. NAND
23. EX-NOR
24. OR
g) $(101) 2+(011) 2=$ \qquad
25. 1000
26. 101
27. 1010
28. 112
h) A small circle on the output of a logic gate is used to represent the:
29. Comparator operation.
30. OR operation.
31. NOT operation.
32. AND operation.
i) The format used to present the logic output for the various combinations of logic inputs to a gate is called $a(n)$:
33. Truth table.
34. Input logic function.
35. Boolean constant.
36. Boolean variable.
j) Which of the examples below expresses the distributive law?
37. $(A+B)+C=A+(B+C)$
38. $A(B+C)=A B+A C$
39. $A+(B+C)=A B+A C$
40. $A(B C)=(A B)+C$
k) Which of the following is a form of De Morgan's Theorem?
41. $\overline{X+Y}=\bar{X}+\bar{Y}$
42. $X(1)=X$
43. $\overline{X Y}=\bar{X}+\bar{Y}$
44. $X+0=0$
l) Which of the following expressions is in the sum-of-products (SOP) form?
45. $(A+B)(C+D)$
46. $(A) B(C D)$
47. $A B(C D)$
48. $A B+C D$
m) Applying DeMorgan's theorem to the expression $\overline{\mathrm{ABC}}$, we get \qquad -
49. $\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}$
50. $\bar{A}+\bar{B}+\bar{C}$
51. $\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C} \overline{\mathrm{C}}$
52. $A(B+C)$
n) The systematic reduction of logic circuits is accomplished by:
53. using Boolean algebra
54. symbolic reduction
55. TTL logic
56. using a truth table.

Attempt any four questions from $Q-2$ to Q-8

Q-2

Attempt all questions
A Solve the following:

$$
\begin{array}{ll}
\text { 1. } & (11011011)_{2}+(0101101)_{2} \\
\text { 2. } & (1101.110)_{2}-(100.011)_{2} \\
\text { 3. } & (11001.101)_{2} *(11.101)_{2} \tag{7}
\end{array}
$$

B Explain NAND \& NOR Gates with Figures and Truth Tables.

Q-8 Attempt all questions
A Explain J-K And Master Slave J-K Flip Flop.
B Explain Watt Meter.
A Write De-Morgan's Theorem. Explain with the help of neat and clean figure.

$$
\mathrm{Y}=\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{ABCC}+\mathrm{ABB}+\mathrm{AAC}
$$

Find POS:-

$$
\mathrm{Y}=\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=(\mathrm{A}+\mathrm{BB})(\mathrm{A}+\mathrm{CC})(\mathrm{A}+\mathrm{BB}+\mathrm{D})
$$ Converter.

B Explain BCD to Seven Segment Decoder.

Attempt all questions

A Draw the logic diagrams for the following:-
i. $\quad Y=A B+A B+B C$
ii. $\quad Y=A B C+A B D+A C$
iii. $\quad \mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\mathrm{D})$ clean figure.

Q-6 Attempt all questions

A What is Encoder? Explain Octal to Binary encoder. truth table.

A Explain Basic Building Blocks Of Digital Instruments.
B Explain half adder with the help of necessary diagram

A Draw and Explain Block Diagram of D/A Converter. Give types of D/A

B Write the types of A/D Converter. Explain any one A/D Converter with neat and

B What is Flip-Flop? Explain R-S Flip Flop with block diagram, logic diagram and

